High Voltage 4-CH LED Driver

General Description

The RT8577 is an 4-CH LED driver capable of delivering 200 mA for each channel. The RT8577 is a current mode boost converter with an adjustable switching frequency via the RT pin from 100 kHz to 1 MHz and a wide VIN range from 9 V to 28 V .

The PWM output voltage loop selects and regulates the LED pin with the highest voltage string to 0.6 V , hence allowing voltage mismatches between LED strings. The RT8577 automatically detects and disconnects any unconnected and/or broken strings during operation from PWM loop to prevent $\mathrm{V}_{\text {Out }}$ from over voltage. The 1.5\% matched LED currents on all channels are simply programmed with a resistor. A very high contrast ratio true digital PWM dimming can be achieved by driving the PWM pin with a PWM signal.

When an abnormal situation (open/short/thermal) occurs, a status signal will be sent to the system to shut down the IC.

Ordering Information

 RT8577口ロ-Package Type
QW : WQFN-20L 5x5 (W-Type)
Lead Plating System
Z : ECO (Ecological Element with Halogen Free and Pb free)
Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb -free soldering processes.

Marking Information

RT8577ZQW : Product Number
YMDNN : Date Code

Features

- Wide Input Supply Voltage Range : 9V to 28 V
- Adjustable Boost Controller Switching Frequency from 100 kHz to 1 MHz
- Programmable Channel Current
- Channel Current Matching : $\pm 1.5 \%$
- External Dimming Control
- Boost MOSFET Over Current Protection
- Automatic LED Open/Short Protection to Avoid Output Over Voltage
- VCC Under Voltage Lockout
- Adjustable Over Voltage Protection
- Under Voltage Protection
- Thermal Shutdown Protection
- Abnormal Status Indicator for Open/Short/Thermal Condition
- RoHS Compliant and Halogen Free

Applications

- LCD TV, Monitor Display Backlight
- LEDDriver Application
- General Purpose Constant Current Source

Pin Configurations

Typical Application Circuit

Figure 1. General Application

Figure 2. External P-MOSFET Isolation Application

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	LED2	Channel 2 LED Current Sink, Leave this pin unconnected if it is not used.
2	LED1	Channel 1 LED Current Sink, Leave this pin unconnected if it is not used.
$3,17,18$, 21 (Exposed pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
4	OVP/UVP	Over Voltage and Under Voltage Protection. PWM boost converter turns off when Vovp or VuvP goes higher than 1.2V or lower than 0.6V, respectively.
5	RISET	LED Current Set Pin. A resistor or a current from DAC on this pin programs the full LED current.
6	PWM	Dimming Control Input.
7	STATUS	Boost Converter Operation Status Output.
8	RT	Switching Frequency Set. Connect a resistor between RT and GND to set the boost converter switching frequency.
10	VC	PWM Boost Converter Loop Compensation Node. 11
12	EN	Soft-Start Pin. Place a capacitor of at least 10nF from this pin to GND to set the soft-start time period.
13	Chip Enable. When EN is pulled low, the chip will be shut down.	
14	PGND	Current Sense Input. During normal operation, this pin senses the voltage across the external inductor current sensing resistor for peak current mode control and also to limit the inductor current during every switching cycle.
15	Boost Converter Power Ground.	
16	CREG	Boost Converter Power Switch Gate Output. This pin drives the external power N-MOSFET device.
14 VCC capacitor should be placed on this pin to stabilize the 5V output of the		
internal regulator. This regulator is for chip internal use only.		

Function Block Diagram

Absolute Maximum Ratings (Note 1)

- Supply Voltage, Vcc, STATUS 33 V
- LED1 to LED4 50V
- PWM, EN, DRV, SEN, SS, VC, RT, CREG, OVP/UVP, RISET 5.5 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ WQFN-20L 5×5 2.778W
- Package Thermal Resistance (Note 2) WQFN-20L $5 \times 5, \theta_{\mathrm{JA}}$ $36^{\circ} \mathrm{C} / \mathrm{W}$
WQFN-20L $5 \times 5, \theta_{\mathrm{Jc}}$ $6^{\circ} \mathrm{C} / \mathrm{W}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)
HBM (Human Body Mode) 2kV
MM (Machine Mode) 200V
Recommended Operating Conditions (Note 4)
- Supply Voltage, Vcc 9 V to 28 V
- LED1 to LED4 45 V
- ILED1 to ILED4 10 mA to 200 mA
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(V_{C C}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit	
Supply Voltage								
Supply Current		IVCC	Switching Off	--	5	--	mA	
Shutdown Current		ISHDN	$\mathrm{V}_{\mathrm{EN}}<0.7 \mathrm{~V}$	--	--	10	$\mu \mathrm{A}$	
VDD LDO Output		$V_{\text {CREG }}$		--	5	--	V	
VDD LDO Capability		ICREG		30	--	--	mA	
VCC UVLO Threshold		VUVLO	VCC Rising	--	6.7	8	V	
		Hysteresis	--	1.4	--			
EN Threshold Voltage	Logic-High		VENH		1.5	--	--	V
	Logic-Low	VENL		--	--	0.8		
LED Current Programming								
LED Current Accuracy			$\mathrm{R}_{\text {ISET }}=9.1 \mathrm{k} \Omega, \mathrm{V}_{\text {PWM }}>1.2 \mathrm{~V}$	114	120	126	mA	
LED Current Matching			$\begin{aligned} & \text { RISET }=9.1 \mathrm{k} \Omega, \mathrm{~V} \text { PWM }>1.2 \mathrm{~V} \\ & \frac{\text { LLEDx }^{\text {l- }} \text { LED_AVE }}{\mathrm{I}_{\text {LED_AVE }}} \times 100 \% \end{aligned}$	--	± 1.5	± 3	\%	
LED1 to LED4 Regulation Voltage			$\mathrm{I}_{\text {LED }}=200 \mathrm{~mA}$	--	0.6	--	V	
V LED Threshold			No Connection	--	0.1	--	V	
RISET Pin Voltage				--	1.2	--	V	

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit	
Dimming								
PWM Threshold Voltage	Logic-High	$V_{\text {PWM }}$		1.2	--	--	V	
	Logic-Low	VPWML		--	--	0.35		
PWM Boost Controller								
Switching Frequency		$\mathrm{f}_{\text {SW }}$	$\mathrm{R}_{\mathrm{RT}}=24 \mathrm{k} \Omega$	--	1	--	MHz	
		$\mathrm{R}_{\mathrm{RT}}=$ Open	--	100	--	kHz		
Minimum On Time			ton		--	100	--	ns
Maximum Duty Cycle		Dmax		80	--	--	\%	
SEN Current Sense Limit			Input Current Limit	--	0.5	--	V	
Gate Driver Source				--	2.5	--	A	
Gate Driver Sink				--	3	--	A	
OVP, UVP, SCP, OTP and Soft-Start								
OVP Threshold		Vovp		--	1.2	--	V	
UVP Threshold		VuVp		--	0.6	--	V	
SCP Threshold		VSCP	LED1 to LED4	--	4.3	--	V	
Soft-Start Current		ISS	$\mathrm{V}_{\text {SS }}<2.5 \mathrm{~V}$	--	6	--	$\mu \mathrm{A}$	
Thermal Shutdown Temperature		TSD	Lockout Temperature Point	--	150	--	${ }^{\circ} \mathrm{C}$	
Thermal Shutdown Hysteresis		$\Delta T_{S D}$	Resume Temperature Point	--	20	--	${ }^{\circ} \mathrm{C}$	
STATUS Low Voltage		$V_{\text {STATUS }}$	Open Drain at 10 mA	--	--	0.5	V	

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
Note 2. θ_{JA} is measured in natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a high-effective thermal conductivity four-layer test board of JEDEC 51-7 thermal measurement standard. The measurement case position of θ_{Jc} is on the exposed pad of the package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Operating Characteristics

Efficiency vs. Input Voltage

Power On from EN

LED Current vs. PWM Duty Cycle

Power On from VIN

Power On from PWM

Application information

The RT8577 is an 4-CH driver controller that delivers well matched LED current to each channel of LED strings. The external N-MOSFET current source will accommodate the power dissipation difference among channels resulting from the forward voltage difference between the LED strings. With high speed current source N-MOSFET drivers, the RT8577 features highly accurate current matching, while also providing very fast turn-on and turn-off times. This allows a very narrow minimum on or off pulse. The RT8577 integrates adjustable switching frequency and soft-start and provides circuitry for over temperature, over voltage, under voltage and current limit protection.

Soft-Start

The RT8577 employs a soft-start feature to limit the inrush current. The soft-start circuit prevents excessive inrush current and input voltage droop. The soft-start time is determined by a capacitor, Css, connected between SS and GND and charged with a $6 \mu \mathrm{~A}$ constant current as shown in the following equation.
$\mathrm{t}_{\mathrm{ss}}(\max)=\mathrm{C}_{\mathrm{ss}} \times 4.8 \times 10^{5}(\mathrm{~s})$
The value of capacitor Css is user-defined to satisfy the designer' requirement.

Compensation

The regulator loop can be compensated by adjusting the external components connected to the VC pin. The VC pin is the output of the internal error amplifier. The compensation capacitor will adjust the integrator zero to maintain stability and the resistor value will adjust the frequency integrator gain for fast transient response. Typical values of the compensation components are $\mathrm{R}_{\mathrm{C}}=$ $560 \Omega, \mathrm{C}_{\mathrm{C}}=0.22 \mu \mathrm{~F}$.

LED Connection

The RT8577 equips 4-CH LED drivers and each channel supports up to 15 LEDs. The LED strings are connected from the output of the boost converter to pin LEDx ($x=1$ to 4) respectively. If one of the LED channel is not in use, the LED pin should be opened directly.

Setting and Regulation of LED current

The LED current can be calculated by the following equation :
$\mathrm{L}_{\text {LED }} \cong \frac{1092}{\mathrm{R}_{\text {ISET }}}$
where $\mathrm{R}_{\text {ISET }}$ is the resistor between the RISET pin and GND. This setting is the reference for the LED current at pin LEDx and represents the sensed LED current for each string. The DC/DC converter regulates the LED current according to the setting.

Over Voltage and Under Voltage Protection

The RT8577 integrates Over Voltage Protection (OVP) and Under Voltage Protection (UVP). When the voltage at the OVP/UVP pin rises above the threshold voltage of approximately 1.2 V or falls below the threshold voltage of approximately 0.6 V , the internal switch will be turned off and STATUS pin will be pulled high. The internal switch will be turned on again once the voltage at the OVP/UVP pin returns to normal range. The output voltage can be clamped at a certain voltage level and can be calculated by the following equations :
$\mathrm{V}_{\mathrm{OUT}(\mathrm{OVP})}=\mathrm{V}_{\mathrm{OVP}} \times\left(1+\frac{\mathrm{R}_{\mathrm{OVP} 2}}{\mathrm{R}_{\mathrm{OVP} 1}}\right)$
$\mathrm{V}_{\mathrm{OUT}(\mathrm{UVP})}=\mathrm{V}_{\mathrm{UVP}} \times\left(1+\frac{\mathrm{R}_{\mathrm{OVP} 2}}{\mathrm{R}_{\mathrm{OVP} 1}}\right)$
where $\mathrm{R}_{\mathrm{OVP} 1}$ and $\mathrm{R}_{\mathrm{OVP} 2}$ are the resistors in the resistive voltage divider connected to the OVP/UVP pin. If at least one string is in normal operation, the controller will automatically ignore the open strings and continue to regulate the current for the strings in normal operation. Suggested value for Rovp2 is up to $3 \mathrm{M} \Omega$ to prevent loading effect.

LED Short Circuit Protection

The RT8577 integrates LED Short Circuit Protection (SCP). If one of the LED1 to LED4 pin voltages exceeds a threshold of approximately 4.3 V during normal operation, the STATUS pin will be pulled high for a fault signal.

STATUS

After the IC is enable. STATUS will output logic high if LED Short/OVP/UVP/OTP conditions exist. STATUS will be reset after V_{IN} or EN is re-applied.

Setting the Switching Frequency

The RT8577 switching frequency is programmable from 100 kHz to 1 MHz by adjusting the oscillator resistor, R_{RT}. The switching frequency can be calculated by the following equation :
$f_{S W} \cong 100 k+\frac{21.6 \times 10^{9}}{R_{R T}}$

Current Limit Protection

The RT8577 can sense the R RENSE voltage between the SEN pin and GND to achieve over current protection. The boost converter senses the inductor current during the on period. The duty cycle depends on the current signal and internal slope compensation compared with the error signal. The external switch will be turned off when the current signal is larger than the internal slope compensation. In the off period, the inductor current will decrease until the internal switch is turned on by the oscillator. The current limit value can be calculated by the following equation :
Current Limit $(A) \cong \frac{0.5 \mathrm{~V}}{R_{\text {SENSE }}}$

Brightness Control

The RT8577 features a digital dimming control scheme. A very high contrast ratio true digital PWM dimming is achieved by driving the PWM pin with a PWM signal. The recommended PWM frequency is 200 Hz to 10 kHz , but the LED current cannot be 100\% proportional to duty cycle, especially for high frequency and low duty ratio.

Over Temperature Protection

The RT8577 has over temperature protection function to prevent the IC from overheating due to excessive power dissipation. The IC will shut down and the STATUS pin will be pulled high when junction temperature exceeds $150^{\circ} \mathrm{C}$. Main converter starts switching after junction temperature cools down by approximately $20^{\circ} \mathrm{C}$

Inductor Selection

The value of the inductance, L , can be approximated by the following equation, where the transition is from Discontinuous Conduction Mode (DCM) to Continuous Conduction Mode (CCM) :
$L=\frac{\mathrm{D} \times(1-\mathrm{D})^{2} \times \mathrm{V}_{\mathrm{OUT}}}{2 \times \mathrm{f} \times \mathrm{I}_{\mathrm{OUT}}}$

The duty cycle can be calculated as the following equation :
$D=\frac{V_{\text {OUT }}-V_{\text {IN }}}{V_{\text {OUT }}}$
where $\mathrm{V}_{\text {OUt }}$ is the maximum output voltage, $\mathrm{V}_{\text {IN }}$ is the minimum input voltage, f is the operating frequency, and lout is the sum of current from all LED strings.

The boost converter operates in DCM over the entire input voltage range when the inductor value is less than this value, L. With an inductance greater than L, the converter operates in CCM at the minimum input voltage and may be discontinuous at higher voltages.

The inductor must be selected with a saturated current rating that is greater than the peak current as provided by the following equation :

$$
\mathrm{I}_{\mathrm{PEAK}}=\frac{\mathrm{V}_{\mathrm{OUT}} \times \mathrm{I}_{\mathrm{OUT}}}{\eta \times \mathrm{V}_{\mathrm{IN}}}+\frac{\mathrm{V}_{\mathrm{IN}} \times \mathrm{D} \times \mathrm{T}}{2 \times \mathrm{L}}
$$

where η is the efficiency of the power converter.

Diode Selection

Schottky diodes are recommended for most applications because of their fast recovery time and low forward voltage. Power dissipation, reverse voltage rating, and pulsating peak current are important parameters for consideration when making a Schottky diode selection. Make sure that the diode's peak current rating exceeds IPEAK and reverse voltage rating exceeds the maximum output voltage.

Capacitor Selection

The input capacitor reduces current spikes from the input supply and minimizes noise injection to the converter. For general applications, six $4.7 \mu \mathrm{~F}$ ceramic capacitors are sufficient. A value higher or lower may be used depending on the noise level from the input supply and the input current to the converter.

It is recommended to choose a ceramic capacitor based on the output voltage ripple requirements. The minimum value of the output capacitor, Cout, can be calculated by the following equation :

$$
\mathrm{C}_{\text {OUT }}=\frac{\mathrm{l}_{\mathrm{OUT}} \times \mathrm{D}}{\Delta \mathrm{~V}_{\text {OUT }} \times \mathrm{f}}
$$

where $\Delta \mathrm{V}_{\text {OUT }}$ is the peak-to-peak ripple voltage at the output.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :
$P_{D(\text { MAX })}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
where $T_{J_{\text {(MAX) }}}$ is the maximum junction temperature, T_{A} is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications of RT8577, the maximum junction temperature is $125^{\circ} \mathrm{C}$ and T_{A} is the ambient temperature. The junction to ambient thermal resistance, θ_{JA}, is layout dependent. For WQFN$20 \mathrm{~L} 5 \times 5$ packages, the thermal resistance, θ_{JA}, is $36^{\circ} \mathrm{C} /$ W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by the following formula :
$P_{D(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C} /\left(36^{\circ} \mathrm{C} / \mathrm{W}\right)=2.778 \mathrm{~W}\right.$ for
WQFN-20L 5×5 package
The maximum power dissipation depends on the operating ambient temperature for fixed $\mathrm{T}_{J(\mathrm{MAX})}$ and thermal resistance, θ_{JA}. For RT 8577 package, the derating curve in Figure 3 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 3. Derating Curve for RT8577 Packages

Layout Considerations

Careful PCB layout is very important for designing switching power converter circuits. The following layout guidelines should be strictly followed for best performance of the RT8577.

- The power components L1, D1, $\mathrm{C}_{\mathbb{N}}$, Cout must be placed as close as possible to the IC to reduce current loop. The PCB trace between power components must be as short and wide as possible.
- The compensation circuit should be kept away from the power loops and shielded with a ground trace to prevent any noise coupling. Place the compensation components, R_{C} and C_{C}, as close as possible to pin 9.
- The exposed pad of the chip should be connected to ground plane for thermal consideration.

Figure 4. PCB Layout Guide

Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches					
	Min	Max	Min	Max				
A	0.700	0.800	0.028	0.031				
A1	0.000	0.050	0.000	0.002				
A3	0.175	0.250	0.007	0.010				
b	0.250	0.350	0.010	0.014				
D	4.900	5.100	0.193	0.201				
D2	3.100	3.200	0.122	0.126				
E	4.900	5.100	0.193	0.201				
E2	3.100	3.200	0.122	0.126				
e	0.650							0.026
L	0.550	0.650	0.022	0.026				

W-Type 20L QFN 5x5 Package

Richtek Technology Corporation

Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)
5F, No. 95, Minchiuan Road, Hsintien City Taipei County, Taiwan, R.O.C.
Tel: (8862)86672399 Fax: (8862)86672377
Email: marketing@richtek.com

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.

